翻訳と辞書
Words near each other
・ Nížkov
・ Nížkovice
・ Néria Lúcio Buzatto
・ Nérigean
・ Nérignac
・ Néris-les-Bains
・ Néron (opera)
・ Néron differential
・ Néron model
・ Néron, Eure-et-Loir
・ Néronde
・ Néronde-sur-Dore
・ Nérondes
・ Néron–Ogg–Shafarevich criterion
・ Néron–Severi group
Néron–Tate height
・ Néry
・ Néré
・ Nérée
・ Nérée Arsenault
・ Nérée Beauchemin
・ Nérée Boubée
・ Nérée Le Noblet Duplessis
・ Nérée Tétreau
・ Néstor
・ Néstor Adrián Fernández
・ Néstor Albiach
・ Néstor Almendros
・ Néstor Araujo
・ Néstor Ayala


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Néron–Tate height : ウィキペディア英語版
Néron–Tate height
In number theory, the Néron–Tate height (or canonical height) is a quadratic form on the Mordell-Weil group of rational points of an abelian variety defined over a global field. It is named after André Néron and John Tate.
==Definition and properties==
Néron defined the Néron–Tate height as a sum of local heights. Although the global Néron–Tate height is quadratic, the constituent local heights are not quite quadratic. Tate (unpublished) defined it globally by observing that the logarithmic height h_L associated to a symmetric invertible sheaf L on an abelian variety A is “almost quadratic,” and used this to show that the limit
:\hat h_L(P) = \lim_\frac
exists, defines a quadratic form on the Mordell-Weil group of rational points, and satisfies
:\hat h_L(P) = h_L(P) + O(1),
where the implied O(1) constant is independent of P.〔Lang (1997) p.72〕 If L is anti-symmetric, that is ()^
*L=L, then the analogous limit
:\hat h_L(P) = \lim_\frac
converges and satisfies \hat h_L(P) = h_L(P) + O(1), but in this case \hat h_L is a linear function on the Mordell-Weil group. For general invertible sheaves, one writes L^ = (L\otimes()^
*L)\otimes(L\otimes()^
*L^) as a product of a symmetric sheaf and an anti-symmetric sheaf, and then
:\hat h_L(P) = \frac12 \hat h_(P) + \frac12 \hat h_\quad \hat h_L(0)=0.
The Néron–Tate height depends on the choice of an invertible sheaf on the abelian variety, although the associated bilinear form depends only on the image of L in
the Néron–Severi group of A. If the abelian variety A is defined over a number field ''K'' and the invertible sheaf is symmetric and ample, then the Néron–Tate height is positive definite in the sense that it vanishes only on torsion elements of the Mordell-Weil group A(K). More generally, \hat h_L induces a positive definite quadratic form on the real vector space A(K)\otimes\mathbb.
On an elliptic curve, the Néron-Severi group is of rank one and has a unique ample generator, so this generator is often used to define the Néron–Tate height, which is denoted \hat h without reference to a particular line bundle. (However, the height that naturally appears in the statement of the Birch–Swinnerton-Dyer conjecture is twice this height.) On abelian varieties of higher dimension, there need not be a particular choice of smallest ample line bundle to be used in defining the Néron–Tate height, and the height used in the statement of the Birch–Swinnerton-Dyer conjecture is the Néron–Tate height associated to the Poincaré line bundle on A\times\hat A, the product of A with its dual.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Néron–Tate height」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.